Development of High Energy Cathode Materials

Ji-Guang Zhang and Jun Liu

Pacific Northwest National Laboratory

2011 DOE Vehicle Technologies Program Review May 9-13, 2011

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project ID#: ES056

Overview

Timeline

- Start date: Oct. 2010
- End date: Sept.2011
- Percent complete:70%

Budget

- Total project funding
- FY10: 300K (100% DOE)

Barriers addressed

- Low energy/low rate
- High cost
- Cycle life

Partners

- SUNY Binghamton
- ANL
- University of Washington

Objectives

- Investigate the thermal stability of lithium metal phosphate based cathode.
- ➤ Improve the performance of high voltage spinel LiNi_{0.5}Mn_{1.5}O₄.
- Develop high capacity cathode materials with stable cycling and high rate performances.

Milestones (FY10-11)

- Synthesize LiMnPO₄ with high performance and investigate their thermal stability. – Completed
- Synthesize and optimize the performance of high voltage spinel (LiNi_{0.5}Mn_{1.5}O₄) – On going
- Synthesize nano structured vanadium based cathode with high capacity (>300 mAh/g) and rate capability.
 - Completed

Approach

1. Investigation on the thermal stability of LiMnPO₄

- > Synthesize LiMnPO₄ in molten hydrocarbon
- ➤ Use electrochemically cycled LiMnPO₄ electrode to replace chemically delithiated sample.
- ➤ Investigate thermal stability of LiMnPO₄ using *in-situ* XRD, XPS, SEM-EDAX, TGA-DSC-MS characterizations

2. Synthesis of LiNi_{0.5}Mn_{1.5}O₄

- > Starting materials: all low cost (Li₂CO₃, MnCO₃, NiO).
- Solid state synthesis: only milling and heating are involved. Easy scale-up.
- Bulk modification: Cr doping
- Surface modification: electrolyte additives, surface coating.
- Investigation of morphology: particle size/morphology, packing density etc.

3. Synthesis of Li₃V₂(PO₄)₃ and LiV₃O₈

- Two cost-effective solid-state-reaction methods for Li₃V₂(PO₄)₃
- Facile solid-state-reaction method for LiV₃O₈

LiMnPO₄ Electrode for Thermal Stability

- Electrochemically active LiMnPO₄ nanoplates were obtained via molten hydrocarbon approach at 550°C.
- LiMnPO₄ paper electrodes were made for thermal stability study of charged MnPO₄.
- Electrode comprised of LiMnPO₄: Ketjen black: PTFE = 70: 22: 8 wt%.
- Electrodes were collected after electrochemical charge and discharge for stability study.

Pacific Northwest
NATIONAL LABORATORY

In-situ XRD on electrochemically cycled LiMnPO₄ and MnPO₄·H₂O powder as a function of temperature

- Charged MnPO₄ electrode undergo structural change [(Jahn –Teller Distortion) above 180°C and reduction to [Mn₂P₂O₇ above 470°C
- MnPO₄·H₂O powder undergo reduction to Mn₂P₂O₇ above 470°C.
- Discharge LiMnPO₄ electrode was stable up to 534°C.

TGA-DSC-MS on LiMnPO₄ Electrode

- DSC show sharp exothermic peak at 490°C related to oxygen release during reduction of MnPO₄ to Mn₂P₂O₇.
- No oxygen evolution is observed but most likely to be released as CO₂ (C + O₂ → CO₂).
 Pacific Northwest

NATIONAL LABORATORY

Surface Chemical Analyses on LiMnPO₄ Electrode

LiMnPO₄ electrode before electrochemical cycling

LiMnPO₄ electrode after 1st cycle (discharged state)

- LiMnPO₄ electrodes before and after electrochemical cycling show increase in F content from both XPS and EDAX.
- This indicate some type of SEI layer formation on the electrode which is responsible for the weight changes below 450°C.

NATIONAL LABORATORY

Pacific Northwest

Thermal Stability Mechanism on Charged MnPO

$$MnPO_{4} \xrightarrow{150\sim180^{\circ}C} MnPO_{4} \xrightarrow{490^{\circ}C} \frac{1}{2}Mn_{2}P_{2}O_{7} + \frac{1}{2}O_{2} \uparrow$$

$$I_{Ahn-Teller\ Distortion} I_{Ahn-Teller\ Distortion} I_{Ahn-Tell$$

- From in-situ XRD, TGA-DSC-MS, XPS and EDAX results on the charged and discharged LiMnPO₄ cathode, the charged state of MnPO₄ undergoes structural changes due to Jahn-Teller effect at above 180°C and followed by reduction into Mn₂P₂O₇ at 490°C.
- The weight loss up to 450°C for charged MnPO₄ show similar behavior as that of discharged LiMnPO₄ cathode, indicating that the weight loss is due to decomposition of SEI layer formed during high-voltage electrochemical cycling process; this is similar to other cathodes reported.
- From the mass spectroscopy result during TGA analyses, no oxygen evolution was observed in charged/discharged LiMnPO₄ electrodes. The oxygen produced during reduction is released as CO₂ gas at 490°C after reacting with conductive carbon additive and is observed as sharp exothermic peak in the DSC scan.

Cr Doping Increased Disorder

- ✓ As-prepared particles has a large particle size (>2 µm).
- ✓ Micron-sized samples further aggregate into secondary particles beneficial the practical application.
- ✓ LiNi_{0.5}Mn_{1.5}O₄: Mixed phases of disordered and ordered phase (the highlighted reflections are forbidden by $Fd\overline{3}m$).
- ✓ Cr-doped spinel: The super-lattice pattern is not observable.
- ✓ Cr substitution increases the disordering between Ni and Mn ions (consistent with the volume increase in Cr-doped spinel)

NATIONAL LABORATORY

Cr Doping: Reduced Impurity Phase and Increased Disorder

- Both curves can be indexed into Fd3m (non-stoichiometry disordered LiNi_{0.5}Mn_{1.5}O_{4-δ})
- Without doping: a small amount of Li_xNi_yO co-exist.
- After Cr doping: Impurity not detectable.
- Lattice parameter increases after Cr-doping (greater disorder)

Electrochemical Performances of Undoped LNMO4

- Reversible capacity: 130 mAh/g; 1st cycle efficiency: 75%.
- Mn³⁺ content is minimal as reflected by the short 4.0 V plateau.
- Operation voltage is ~ 4.7 V with small polarization.
- Capacity fading is quick for pure LNMO₄.

Electrochemical Performances of LiNi_{0.45}Cr_{0.05}Mn_{1.5}O₄

- After Cr-doping:
 - Disordered phase is increased
 - Mn³⁺ content is also increased.
 - The initial capacity is slightly decreased due to Cr-doping
- Very stable cycling is maintained in Cr-doped spinel with reversible capacity at ca.130 mAh/g.
- The content of disordered phase (Mn³+) is critical for the high performance spinel.
 Pacific Northwest

Electrolyte Additive Improved 1st Cycle Efficiency of LiNi_{0.45}Cr_{0.05}Mn_{1.5}O₄

- Without electrolyte additive, 1st cycle efficiency is low (~75%).
- LiBOB additive (0.25%) increased 1st cycle efficiency to 82%.
- Stable cycling almost without capacity fading in the first 80 cycles.
- Electrolyte additive is also important for high voltage spinel.

Rate Capability of LiNi_{0.45}Cr_{0.05}Mn_{1.5}O₄

- Good rate capability is observed at different rates.
- High voltage spinel does NOT have to go to nano size.
- No need to add a large amount of carbon for good high rate performance.

Nano-Engineering Improves Performance of Vanadium Based Cathode Materials

V₂O₅ nanorod

Li₃V₂(PO₄)₃ nano particle in carbon matrix

83 mAh/g at 32C rate

Synthesis controls material properties

Collaboration and Coordination with Other Institutions

Partners:

- ➤ SUNY Binghamton (Academic): Magnetic properties of doped LiMnPO_{4.}
- ➤ ANL (Federal Lab): Provide alternative precursors for LiNi_{0.5}Mn_{1.5}O₄ synthesis.
- ➤ University of Washington (Academic): Characterization of vanadium based cathodes.

Future Work - FY2011/FY2012

- ➤ Understand how the disordered content, residual Mn³+ and different dopants influence the electrochemical behavior of LiNi_{0.5}Mn_{1.5}O_{4.}
- Improve the first cycle efficiency and high temperature cycling performance of LiNi_{0.5}Mn_{1.5}O₄ through surface modification combined with appropriate electrolyte additives.
- Develop spinel/layered cathode composite with improved energy density.

Milestones (FY12)

- ➤ Optimization of synthesis approach for $LiNi_{0.5}Mn_{1.5}O_4$ and doped ones. -3/12
- Identification of electrolyte/additive for surface-modification on LiNi_{0.5}Mn_{1.5}O₄. − 6/12
- Synthesis of spinel/layered cathode composite. –9/12

Summary

- 1. Improved the performance of high voltage spinel-LiNi_{0.5}Mn_{1.5}O₄.
 - A facile and cost-effective synthesis approach to prepare high voltage spinel.
 - Cycling performances is significantly improved after Cr-doping.
 - Appropriate electrolyte additives effectively improves the Coulombic efficiency of the first cycle.
- 2. Investigated the thermal stability of lithium metal phosphate based cathode.
 - Charged MnPO₄ is structurally stable up to 180°C.
 - Oxygen release during reduction occurs at 490°C.
 - Significant amount of SEI layer (~10 wt%) is formed during electrochemical charging of LiMnPO₄ cathode.
- 3. Developed vanadium-based high capacity cathode materials with stable cycling and high rate performances.
 - LiV₃O₈ with High rate performance: 239 mAh g⁻¹ at 1000 mA g⁻¹ rate and an average capacity fading rate of 0.34% per cycle for 100 cycles.

